summaryrefslogtreecommitdiff
path: root/ebus/webhdf/__init__.py
diff options
context:
space:
mode:
Diffstat (limited to 'ebus/webhdf/__init__.py')
-rw-r--r--ebus/webhdf/__init__.py26
1 files changed, 16 insertions, 10 deletions
diff --git a/ebus/webhdf/__init__.py b/ebus/webhdf/__init__.py
index af13f87..c1f34dd 100644
--- a/ebus/webhdf/__init__.py
+++ b/ebus/webhdf/__init__.py
@@ -13,7 +13,7 @@ import bottle
import ebus.datastore
-datastore = ebus.datastore.Datastore("testhdffiles")
+datastore = ebus.datastore.Datastore("hdf-data")
app = bottle.Bottle("ebus")
@@ -50,6 +50,8 @@ def sensor_data_put(name,timestamp=None):
klass = ebus.datastore.ValueFloat
elif type == "string":
klass = ebus.datastore.ValueString
+ elif type == "":
+ klass = None
else:
return {'error':'INVALID_TYPE', msg:'Type {0} is invalid'.format(type)}
@@ -58,38 +60,42 @@ def sensor_data_put(name,timestamp=None):
logging.info(msg)
return {'error':None,'msg':msg}
except Exception,e:
- return {'error':e,'msg':e}
+ logging.error("Error: " + "{0} name={1} value={2} type={3}".format(e, name, value, type))
+ return {'error':str(e),'msg':str(e)}
@app.route('/sensor/:name/:startdate/:enddate')
def sensor_name_start_end(name,startdate,enddate):
+ SAMPLING_STEPSIZE=500
try:
startdate, enddate = int(startdate), int(enddate)
logging.info("/sensor/ start={0} end={1}".format(startdate, enddate))
table=datastore.getTable(name)
with datastore:
- i = table.where("(timestamp >= startdate) & (timestamp <= enddate)",step=100)
+ i = table.where("(timestamp >= startdate) & (timestamp <= enddate)",
+ condvars={'startdate':startdate,'enddate':enddate,'timestamp':table.cols.timestamp},
+ step=SAMPLING_STEPSIZE)
timestamps = []
try:
for x in range(20):
i.next()
timestamps.append(i['timestamp'])
- except:
- pass
+ except: pass
+
if len(timestamps) > 10:
- diff = map(lambda (x1,x2): (x2-x1)/100, zip(timestamps[:-1], timestamps[1:]))
+ diff = map(lambda (x1,x2): (x2-x1)/SAMPLING_STEPSIZE, zip(timestamps[:-1], timestamps[1:]))
diff_avg = numpy.average(diff)
time_period = enddate - startdate
samples = time_period / diff_avg
step = numpy.ceil(samples / 400.0)
- data = [(x['timestamp']*1000, x['value'])
+ data = [(x['timestamp'], x['value'])
for x in table.where("(timestamp >= startdate) & (timestamp <= enddate)", step=step)]
logging.info("diff={0} samples={1} step={2} len={3} ({4})".format(diff_avg, samples, step, len(data),name))
else:
- logging.info("No data found ({0})".format(name))
- data = []
+ # Not enough data, sampling approach useless, deliver all data
+ data = [(x['timestamp'], x['value']) for x in table.where("(timestamp >= startdate) & (timestamp <= enddate)")]
return {'sensor':name, 'error':None,'data':data}
except Exception,e:
logging.error("Error: " + str(e) + str(type(e)))
@@ -107,7 +113,7 @@ def sensor_avg_start(name, startdate, period=60*15): #15min
f_group = range(startdate, enddate, period)
data = map(lambda (group_id, grouped_rows): (group_id, numpy.average([row['value'] for row in grouped_rows])),
itertools.groupby(sel_rows, lambda t: (t['timestamp']/period)*period))
- data = map(lambda (timestamp,value): (timestamp*1000, value), data)
+ data = map(lambda (timestamp,value): (timestamp, value), data)
return {'sensor':name, 'error':None,'data':data}
except Exception,e:
return {'sensor':name, 'error':str(e), 'data':None}